1 Data Augmentation

1.1 log of an exponential

The exponential with mean λ has density,

$$
p(t)=\frac{\exp (-t / \lambda)}{\lambda} d t
$$

If we make the transformation $x=\log (t / \lambda)$ then $t=\lambda \exp (x)$ and $d t=$ $\lambda \exp (x) d x$ so the density of x is,

$$
p(x)=\frac{\exp (-\lambda \exp (x) / \lambda)}{\lambda} \lambda \exp (x) d x=\exp (x-\exp (x)) d x
$$

1.2 Data augmentation for Poisson regression

For a Poisson process with with expected number of events in unit time μ the intervals between successive events, t , follow an exponential distribution with mean $\lambda=1 / \mu$ and $x=\log (t / \lambda)=\log (\mu t)=\log (\mu)+\log (t)$, the x will have the density,

$$
p(x)=\exp (x-\exp (x)) d x
$$

If the Poisson regression model has a linear predictor $\log (\mu)=\eta$, then $\log (t)+\eta$ will have a density $\exp (x-\exp (x))$.

Approximating $\exp (x-\exp (x))$ by a single normal distribution would be very inaccurate. So instead we use a mixture distribution based on five normal distributions $N\left(m_{k}, v_{k}\right) k=1 \ldots 5$ with weights w_{k}. The probability that component k generates an observed time t is $w_{k} \phi\left(\log (t)+\eta ; m_{k}, v_{k}\right) d t$ where $\phi(x ; m, v)$ is the density of a normal distribution with mean m and variance v associated with the observation x. The probability that the observation comes from component k is therefore,

$$
\frac{w_{k} \phi\left(\log (t)+\eta ; m_{k}, v_{k}\right)}{\sum_{j=1}^{5} w_{j} \phi\left(\log (t)+\eta ; m_{j}, v_{j}\right)} \quad k=1 \ldots 5
$$

We can simulate the component by selecting k with these probabilities.

1.3 A Gibbs Sampler

We have a model for the mean of the $i^{t h}$ Poisson count that has a general form,

$$
\log \left(\mu_{i}\right)=\operatorname{sum}_{j=1}^{p} \beta_{j} x_{i j}
$$

We will generate $y_{i}+1$ random times between events and associate them with $y_{i}+1$ different components from the 5 component mixture, $r(i, k)$, so that,

$$
\log \left(t_{i k}-\log \left(\lambda_{i}\right)=\log \left(t_{i k}+\log \left(\mu_{i}\right) \sim N\left(m_{r(i, k)}, v_{r(i, k)}\right) \quad k=1 \ldots y_{i}+1\right.\right.
$$

where v is the variance. Assuming that we have normal priors so that $\beta_{j} \sim$ $N\left(M_{j}, V_{j}\right)$ then the terms in the log-posterior that include β_{j} are,

$$
-\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{y_{i}+1} \frac{\left(\log \left(t_{i k}\right)+\log \left(\mu_{i}\right)-m_{r(i, k)}\right)^{2}}{v_{r(i, k)}}-\frac{1}{2} \frac{\left(\beta_{j}-M_{j}\right)^{2}}{V_{j}}
$$

This is quadratic in β_{j} so the conditional posterior will be normally distributed. If we collect the terms in β_{j}^{2} we obtain,

$$
B=-\frac{1}{2}\left[\sum_{i-1}^{n} \sum_{k=1}^{y_{i}+1} \frac{x_{i j}^{2}}{v_{r(i, k)}}+\frac{1}{V_{j}}\right]
$$

and the terms in β_{j} give

$$
A=-\sum_{i-1}^{n} \sum_{k=1}^{y_{i}+1}-\frac{\left(\log \left(t_{i k}\right)+\log \left(\tilde{\mu_{i}}\right)-m_{r(i, k)}\right) x_{i j}}{v_{r(i, k)}}+\frac{M_{j}}{V_{j}}
$$

where $\tilde{\mu}_{i}$ is the linear predictor without the term in β_{j}. It follows that the posterior for β_{j} must be,

$$
N(A / B, v a r=1 / B)
$$

The updating of the precision estimate fir the subject level random effect τ_{u} is exactly as we had for the non-augmented analysis, that is,

$$
G\left(a_{u}+29.5,\left[\frac{1}{b_{u}}+\frac{1}{2} \sum_{i=1}^{59} u_{i}^{2}\right]^{-1}\right)
$$

Similar calculations for τ_{e} lead to,

$$
G\left(a_{e}+118,\left[\frac{1}{b_{e}}+\frac{1}{2} \sum_{i=1}^{59} \sum_{t=1}^{4} e_{i t}^{2}\right]^{-1}\right)
$$

