
1 Data Augmentation

1.1 log of an exponential

The exponential with mean λ has density,

p(t) =
exp(−t/λ)

λ
dt

If we make the transformation x = log(t/λ) then t = λexp(x) and dt =
λexp(x)dx so the density of x is,

p(x) =
exp(−λexp(x)/λ)

λ
λexp(x)dx = exp(x− exp(x))dx

1.2 Data augmentation for Poisson regression

For a Poisson process with with expected number of events in unit time µ the
intervals between successive events, t, follow an exponential distribution with
mean λ = 1/µ and x = log(t/λ) = log(µt) = log(µ) + log(t), the x will have the
density,

p(x) = exp(x− exp(x))dx

If the Poisson regression model has a linear predictor log(µ) = η, then log(t)+η
will have a density exp(x− exp(x)).

Approximating exp(x − exp(x)) by a single normal distribution would be
very inaccurate. So instead we use a mixture distribution based on five nor-
mal distributions N(mk, vk) k = 1...5 with weights wk. The probability that
component k generates an observed time t is wkφ(log(t) + η;mk, vk)dt where
φ(x;m, v) is the density of a normal distribution with mean m and variance v
associated with the observation x. The probability that the observation comes
from component k is therefore,

wkφ(log(t) + η;mk, vk)∑5
j=1 wjφ(log(t) + η;mj , vj)

k = 1...5

We can simulate the component by selecting k with these probabilities.

1.3 A Gibbs Sampler

We have a model for the mean of the ith Poisson count that has a general form,

log(µi) = sump
j=1βjxij

We will generate yi + 1 random times between events and associate them with
yi + 1 different components from the 5 component mixture, r(i, k), so that,

log(tik − log(λi) = log(tik + log(µi) ∼ N(mr(i,k), vr(i,k)) k = 1...yi + 1
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where v is the variance. Assuming that we have normal priors so that βj ∼
N(Mj , Vj) then the terms in the log-posterior that include βj are,
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This is quadratic in βj so the conditional posterior will be normally distributed.
If we collect the terms in β2

j we obtain,
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and the terms in βj give
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where µ̃i is the linear predictor without the term in βj . It follows that the
posterior for βj must be,

N(A/B, var = 1/B)

The updating of the precision estimate fir the subject level random effect τu is
exactly as we had for the non-augmented analysis, that is,
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Similar calculations for τe lead to,
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