
Bayesian Analysis with Stata

John Thompson
Department of Health Sciences

Univeristy of Leicester
john.thompson@le.ac.uk

March 19, 2014

1 Introduction

The manual offers a printed version of the information in the help files of
the commands written for the book Bayesian Analysis with Stata.

The ado files and help files can be net installed from,

http://stata-press.com/data/bas

and the library for running Mata versions of the commands can be obtained
from the same source using net get bas. This downloads a do file that
must be run in order to create the library.

Alternatively the files can be downloaded in zipped form from my web-
page at http://www2.le.ac.uk/Members/trj/home.

1

command description

gbs Gibbs samplers
gbsars adaptive rejection sampling
gbsarms adaptive rejection metropolis sampling
gbsgriddy griddy sampling
gbsslice univariate slice sampling

mcmc Exploring MCMC simulations
mcmcac autocorrelation plots
mcmcbgr Brooks-Gelman-Rubin convergence plot
mcmccheck model checking
mcmccusum cusum plot
mcmcdensity posterior density plot
mcmcgeweke convergence test based on means
mcmcintervals interval plot for sections of a chain
mcmclength run length required for a given accuracy
mcmcmahal Mahanalobis distance plot
mcmcsection convergence check based on plotted densities
mcmcstats summary statistics
mcmctrace trace or history plot

mhs Metropolis-Hasting samplers
mhslogn lognormal random walk
mhsmnorm multivariate normal random walk
mhsnorm normal random walk
mhstrnc random walk over a restricted range

wbs Communication with WinBUGS
wbsarray write data as a WinBUGS formatted array
wbscoda read WinBUGS results into Stata
wbsdecode read a WinBUGS formatted list into Stata
wbslist write data or initial values in list format
wbsmodel write model in WinBUGS syntax to a text file
wbsrun run WinBUGS from within Stata
wbsscript create a WinBUGS script file

Other programs
logdensity log-densities of standard distributions
mcmcrun create MCMC simulations without WinBUGS

2

gbsars - Adaptive Rejection Sampler

Syntax
gbsars logpost b ipar [weight] if in, [options]

options description

lbound(#) lower limit of the range of the grid
ubound(#) upper limit of the range of the grid
grid(numlist) The initial grid of points

maxtry(#) maximum number of points before the algorithm stops

Description
gbsars uses ARS (adaptive rejection sampling) to simulate a value from
a one dimensional posterior distribution. Useful in Gibbs sampling. The
posterior MUST be log-concave, so the algorithm is not completely general.
The grid must consist of at least 3 points placed across the region where the
posterior is thought to lie. Values may be generated outside the range of this
initial grid but not beyond the upper and lower bounds. The log-posterior is
evaluated at each of the points in the grid and those values are used to define
an envelope enclosing the log-posterior. The program uses the envelope for
rejection sampling but any rejected points are added to the grid in order to
improve the fit of the envelope. A warning is printed if the posterior is found
not to be log-concave and the program will stop. If the function is not log-
concave then the more general gbsarms algorithm may be used or the user
might try slice sampling with gbsslice or a Metropolis-Hastings algorithm
such as mhsnorm. For speed of execution the algorithm is programmed in
Mata, although the user’s program for evaluating the log-posterior may be
written in either Stata or Mata. The Mata code for the function is stored
in the library libmcmc which must be installed for the command to work.

Options
The inputs that follow the command word must be, the name of the user’s
program for calculating the log of the conditional posterior density (log-
post), the name of the row vector containing the parameter values (b) and
the number of the parameter that is being updated (ipar). When the user’s
program is called the arguments passed are a scalar that is to contain the
value of the log posterior, the row vector of parameters and the current pa-

3

rameter number. See mhsnorm for more details on how to write the program
for the log posterior.

lbound(#) lower limit of the range of the posterior. Defaults to minus in-
finity.
ubound(#) upper limit of the range of the posterior. Defaults to infinity.
grid(numlist) Set of at least 3 ascending values defining the grid for the
envelope that encloses the log-posterior.
maxtry(#) number of rejection sampling attempts before giving up. De-
faults to 50. If the program takes more than a handful of attempts then
either the posterior is extremely awkward or the initial grid was very poorly
placed.

Returned Results
returns r(logp), the value of the log of the density at the selected point,
r(try), the number of function evaluations required before a point was ac-
cepted and r(fail) a 0,1 indicator of whether the algorithm reached maxtry

without finding an acceptable point. Evidence of lack of log-concavity will
cause gbsars to print a warning and exit with an error.

Mata
To call the Mata function directly requires,
void gbsars(real scalar logp,pointer function f,real matrix X,real rowvector
theta,real scalar ipar,string scalar grid,real scalar maxtry, real scalar lbound,
real scalar ubound | real scalar trys,real scalar fail)

Example

program logpost

args logp b ipar

...

end

matrix b = (2.5, 1.9, 4.0)

gbsars logpost b 2 , grid(1.5 2.0 2.5) lbound(0)

gbsarms - Adaptive Rejection Metropolis Sampler

Syntax

4

gbsarms logpost b ipar [weight] if in, [options]

options description

lbound(#) lower limit of the range of the grid
ubound(#) upper limit of the range of the grid
grid(numlist) The initial grid of points

maxtry(#) maximum number of points before the algorithm stops
logp(#) the value of log-posterior at the current point

Description
gbsarms uses ARMS sampling (adaptive rejection Metropolis sampler) to
simulate a value from a one dimensional posterior distribution. Useful in
Gibbs sampling. The grid consists of at least 3 points placed across the re-
gion where the posterior is thought to lie. Values may be generated outside
the range of this initial grid but not beyond the upper and lower bounds.
The log-posterior is evaluated at each point in the grid and those values
are used to define an envelope enclosing the log-posterior. The algorithm
starts by using the envelope for adaptive rejection sampling in which re-
jected points are added to the grid. To allow for the possibility that the
envelope might not always lie above the log-posterior the point obtained
from rejection sampling is subjected to a Metropolis-Hastings step. As a
Metropolis step is involved in generating the new value, it is not valid to
place the initial grid dependent on previous values from the same chain. The
user must supply a program for evaluating the log-posterior for any given set
of parameter values, see mhsnorm for details of the structure of the program.
The user’s function may be written in Stata or Mata but the calculations for
gbsarms are programmed in Mata. The Mata code is stored in the library
libmcmc which must be installed for the command to work.

gbsars is similar to ARMS but does not have a Metropolis step. It is
slightly more efficient but only works if the log-posterior is log-concave.

Options
The inputs that follow the command word must be, the name of the user’s
program for calculating the log of the conditional posterior density, the name
of the row vector containing the parameter values and the number of the
parameter that is being updated. When the user’s program is called the
arguments passed are a scalar that is to contain the value of the log poste-

5

rior, the row vector of parameters and the current parameter number. See
mhsnorm for more details on how to write the program for the log posterior.

lbound(#) lower limit of the range of the posterior. Defaults to minus in-
finity.
ubound(#) upper limit of the range of the posterior. Defaults to infinity.
grid(numlist) Set of at least 3 ascending values defining the grid for the
envelope that encloses the log-posterior.
maxtry(#) number of rejection sampling attempts before giving up. De-
faults to 50. If the program takes more than a handful of attempts then
either the posterior is extremely awkward or the initial grid was very poorly
placed.
logp(#) Specifies the value of the log-posterior at the current parameter
value. If not specified or set to missing the value is calculated.

Returned Results
returns r(logp), the value of the log of the density at the selected point,
r(try), the number of function evaluations required before a point was ac-
cepted and r(fail) a 0,1 indicator of whether the algorithm reached maxtry

without finding an acceptable point.

Mata
To call the Mata function directly requires,
void gbsarms(real scalar logp,pointer function f,real matrix X,real rowvector
theta,real scalar ipar,string scalar grid,real scalar maxtry, real scalar lbound,
real scalar ubound | real scalar trys,real scalar fail)

Example

program logpost

args logp b ipar

...

end

matrix b = (2.5, 1.9, 4.0)

gbsarms logpost b 2 , grid(1.5 2.0 2.5 3.0) lbound(0)

gbsgriddy - Griddy Sampler

6

Syntax
gbsgriddy logpost b ipar [weight] if in, [options]

options description

grid(numlist) The initial grid of points

metropolis Metropolis acceptance of the sampled point
histogram histogram approximation to the log-function
logp(#) with Metropolis, the value of log-posterior at the current point

Description
gbsgriddy uses Griddy sampling to simulate a value from a one dimensional
posterior distribution. Useful in Gibbs sampling. Griddy sampling works by
approximating the posterior by either a histogram or a set of straight lines
drawn through the log posterior evaluated at a grid of points. By default
a straight line approximation is used. The grid must consist of at least 4
ascending values specified by the user. Placement of the grid is vital to
the success of the algorithm, so it is only useful if the user knows roughly
where the posterior will lie. The Metropolis option tests the generated value
against the previous value using a Metropolis step. This makes the method
exact within the range of the grid. If a Metropolis step is used then the grid
must not be placed based on information derived from the same chain. For
speed, the algorithm is programmed in Mata although the user’s program
for evaluating the log-posterior may be written in Stata or Mata. The Mata
code is stored in the library libmcmc which must be installed for the com-
mand to work.

Options
The inputs that follow the command word must be, the name of the user’s
program for calculating the log of the conditional posterior (logpost), the
name of the row vector containing the parameter values (b), the number
of the parameter that is being updated (ipar). The smallest and largest
values of the grid must be chosen carefully because it is impossible for the
algorithm to simulate values outside that range. When the user’s program
is called the arguments passed are a scalar that will contain the value of
the log posterior, the row vector of parameters and the current parameter
number. See mhsnorm for more details on how to write the program for the
log posterior.

grid(numlist) Set of points defining the initial grid for the envelope that

7

approximates the log-posterior. The grid must contain at least 4 points.
metropolis By default gbsgriddy uses an approximation to the posterior
but this can be made exact within the range of the grid by treating the ap-
proximation as a proposal distribution and using a Metropolis step to accept
or reject the generated value.
histogram requests a histogram approximation to the density rather than
a straight line approximation.
logp(#) log-posterior for the current set of parameter values. Only useful if
a Metropolis update is requested. If set to missing, this value is calculated
by the program.

Returned Results
Returns r(logp) containing the log of the function at the new point.

Mata
To call the Mata function directly requires,
voidgbsgriddy(real scalar logp,pointer function pf,real matrix X,real rowvec-
tor theta,real scalar ipar,string scalar grid| real scalar metropolis,real scalar
histogram)

gbsslice - Slice Sampler

Syntax
gbsslice logpost b ipar [weight] if in, [options]

options description

nstep(#) number of expansion steps
stepsize(#) size of expansion steps
lbound(#) lower limit of the range of the grid
ubound(#) upper limit of the range of the grid
maxtry maximum number of attempts before the algorithm stops
logp(#) the value of log-posterior at the current point

Description
gbsslice uses slice sampling to sample from a one dimensional posterior
distribution. Useful in Gibbs sampling. It is a Metropolis algorithm that
creates its proposal by choosing a random height above the current point
and then moving outwards by adding steps until a slice is created that has

8

a greater width than the density. Random points are then generated within
the slice. The slice is shrunk using rejected points. Calculations are per-
formed by a Mata function but it can be called from Stata as well as from
within a Mata program. Requires a user written program for calculating
the log-posterior that may be written in Stata or Mata. The Mata code is
stored in the library libmcmc which must be installed for the command to
work.

Options
The inputs that follow the command word must be, the name of the user’s
program for calculating the log of the conditional posterior density (log-
post), the name of the row vector containing the parameter values (b) and
the number of the parameter that is being updated (ipar). When the user’s
program is called the arguments passed are a scalar that is to contain the
value of the log posterior, the row vector of parameters and the current pa-
rameter number. See mhsnorm for more details on how to write the program
for the log posterior.
nstep(#) maximum number of steps outwards that are attempted when
trying to locate the end of the slice. Defaults to 6.
stepsize(#) size of the increments that are added in an attempt to locate
the end of the slice. Choosing a value that is approximately equal to the
range of the conditional distribution usually works well. Defaults to 1.
lbound(#) lower bound on the parameter. The slice will not extend below
this value. Defaults to minus infinity.
ubound(#) upper bound on the parameter. The slice will not extend above
this value. Defaults to infinity.
maxtry(#) maximum number of attempts to generate a parameter value
before the algorithm gives up. Defaults to 50. Typically slice sampling finds
a new value within a handful of attempts so exceeding 50 would probably
indicate a very poorly chosen stepsize or an error in logpost
logp(#) Value of the log-posterior at the current point. If a non-missing
value is given that value is used; otherwise the value is calculated using the
user’s function logpost. Specifying the value when it is known will save one
call to the user’s function and so speed the algorithm.

Returned Results
Returns r(logp) containing the log of the density at the sampled point
and r(try1) and r(try2)the number of function evaluations needed by the
algorithm first when expanding the slice and then when sampling points
within the slice. r(fail) returns 1 if maxtry is reached before sampling a

9

point within the slice.

Mata
To call the Mata function directly requires,
voidgbsslice(real scalar logp,pointer function pf,real matrix X,real rowvector
theta,real scalar ipar,real scalarstepsize,real scalarnstep,real scalarlbound,real
scalarubound,real scalarmaxtry| real scalarfail, real scalartry1,real scalartry2)

logdensity - log-densities of standard distributions

Syntax
logdensity distribution logp value par1 par2 .. [weight] if in

Description
logdensity evaluates the log-density of a standard distribution and adds
the result to a user supplied scalar (logp). The function is intended for
use in programs for calculating the log-posterior, see mhsnorm. However,
for complex models that require a lot of evaluations of the log-posterior, it
might be worth replacing the calls to logdensity with user-written code that
can be made more efficient by omitting any unnecessary terms that do not
depend on the parameter of interest.

Following the command word the user must specify,

options description

distribution name of the distribution as a string (see the list below)
logp name of a scalar to which the result is added
value the observation that follows the distribution. Either a single value or a

variable. If a variable the sum of the log-densities is added to logp.
par1 the first parameter of the distribution. Either a number or a variable.
par2 the second parameter if the distribution has one.

The distributions available with logdensity are list below. Here logp
stands for the name of a scalar, y stands for the value and the parameters
are then listed in order. Parameter names in upper case must be specified
as Stata matrices. For details of the parameterizations see the Appendix to
Bayesian Analysis with Stata or the last section of this manual.

For the binomial distribution the factorial terms are omitted so that p

10

options description

Bernoulli logdensity bernoulli logp y p
Beta logdensity beta logp y alpha beta
Binomial logdensity binomial logp y n p
Categorical logdensity categorical logp y p
Chi-squared logdensity chisqr logp y k
Dirichlet logdensity dirichlet logp y alpha
Exponential logdensity exponential logp y mu
Gamma logdensity gamma logp y alpha beta
Generalized Gamma logdensity gengamma logp y alpha beta gamma
Inverse Gamma logdensity igamma logp y alpha beta
Inverse Gaussian logdensity igauss logp y mu lambda
Laplace logdensity laplace logp y mu b
Logistic logdensity logistic logp y mu b
Log-normal logdensity lognormal logp y mu sigma
Multinomial logdensity multinomial logp y p
Multivariate Normal logdensity mnormal logp y mu SIGMA
Multivariate t logdensity mt logp y mu SIGMA k
Negative Binomial logdensity negbin logp y n p k
Normal/Gaussian logdensity normal logp y mu sd
Pareto logdensity pareto logp y a c
Poisson logdensity poisson logp y lambda
Student’ t logdensity t logp y mu sigma k
Uniform logdensity uniform logp y a b
Weibull logdensity weibull logp y v mu
Wishart logdensity wishart logp Y SIGMA k

is treated as a parameter and n is treated as fixed. For the Wishart dis-
tribution k is treated as fixed. The multinomial and Dirichlet distributions
assume that y, p and alpha are stored in Stata variables.

The Mata versions of logdensity are in the library libmcmc but return
the value of the logdensity directly rather than add it to a scalar.

Example

scalar lp = 0

logdensity binomial lp y 10 0.2

11

mcmcac - plot the autocorrelations of a MCMC chain

Syntax
mcmcac varlist if in [, options]

options description

pac partial autocorrelation plots

acoptions(string) options passed directly to ac or pac

goptions(string) options passed to the twoway command

cgoptions(string) options passed to graph combine

save(string,replace) .dta file for saving the autocorrelations

Description
mcmcac plots the autocorrelations or partial autocorrelations using the Stata
commands ac or pac. If the varlist contains more than one parameter the
separate plots are combined within a single plot using graph combine.

Options
pac Plot partial autocorrelations. Defaults to autocorrelations.
acoptions(string) Options passed directly to the Stata’s ac or pac com-
mand.
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.
save(string,replace) Specifies a filename (.dta) for saving the autocorre-
lations or partial autocorrelations.

mcmcbgr - Brooks-Gelman-Rubin plot

Syntax
mcmcbgr varlist if in , chain(varname) [options]

Description
mcmcbgr creates Brooks-Gelman-Rubin plots for assessing the convergence
of parallel chains. The plots are most useful when the chains start from
widely dispersed initial values. As the chains come closer into agreement
the variabaility of the pooled chain should be similar to the average vari-
ability of the individual chains. The original suggestion was for a plot based
on two estimates of the variance of the posterior distribution, one pooling
all of the chains and the other averaging the within chain variance. The
ratio of the two variances was called R. Doubt was expressed about the in-
terpretation of this measure when the posterior is non-normal and a robust

12

options description

chain(varname) Chain identifier - essential
m Number of plotting points
variance Use variance rather than 80% intervals
iteration(varname) Variable for the x-axis
bychain Plot chain-specific variances or intervals

goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

save(string,replace) .dta file for saving the plotting points

alternative was suggested based on the interval between the 10% and 90%
centiles, so that R = the ratio of the interval length from all data to the
average interval length of the separate chains. In each case R is calculated
for increasing chain sizes. For a subchain consisting of the first N values, R
is calculated from the second half of the subchain and then plotted against
N. R should approach 1 if the chains have converged. The lower plot shows
the variance or interval length based on all chains pooled (solid line) and
on the average of the subchains (dashed line). These should stabilise into
horizontal lines.

Options
chain(varname) Variable taking the values 1,2,3. . . to identify the chains
(essential).
m(#) Number of plotting points. Defaults to 20.
variance Requests a plot based on within and between chain variances
rather than the default plot based on 80% intervals
iteration(varname) Variable used for the x-axis. If not specified the points
are plotted in the order in which they appear in the dataset at points 1,2,3...
bychain Show each individual chain in the lower plot, rather than the av-
erage across the chains.
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.
save(string,replace) Specifies a filename (.dta) for saving the plotting
points.

mcmccheck - Bayesian graphical model checking

Syntax

13

mcmccheck , [options]

options description

predictions(string) Variable(s) containing the predicted values

pfilename(string) File (.dta) containing the variables of predicted values

data(string) Variable or value of the actual observation(s)
dfilename(string) File (.dta)containing the observed values.
xaxes(string) Variable or function for the x-axis of the plot
yaxes(string) Variable for the y-axis of the plot

plot(string) Type of plot

goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

save(string) File (.dta) for saving the residuals
koptions(string) Options passed to kdensity

by(varname) Controls symbols in scatter plots

lcondition(string) Label points that satisfy this condition
lvarname(varname) Variable containing the labels
nsamples(#) Number of samples for plot type epp

Description
mcmccheck performs graphical Bayesian model checking based on residuals.
The program calculates the mean of the predictive distribution (fit) and five
basic measures of surprise or unusualness of an observation

1. residual: difference of a value from its mean prediction divided by the
standard deviation of its predictive distribution

2. absresidual: the absolute of the residual in (1)

3. posterior predictive p-value (ppp): tail area under the predictive dis-
tribution that is greater than the observation

4. two-tail posterior predictive p-value (ppp): tail area under the pre-
dictive distribution corresponding to values more extreme than the
observation

5. relative predictive surprise (rps): height of the predictive density at the
observed value as a percentage of the maximum height of the density

14

Options
predictions(string) Variable or stem of a list of variables that contain the
predictions. Each entry is treated as an abbreviated name, thus x would
imply x 1, x 2 etc.
pfile(string) A Stata data file containing the variables specified in the
predictions option.
data(string) Single value or a variable containing the actual data.
dfile(string) A Stata data file containing the variables specified in the data
option.
plot(string) Type of plot required. One of histogram, density, scatter,

lowess, epp, boxplot or summary. If not specified the default is a his-
togram if the data option contains a single value, or a scatter plot if it
contains a variable.
yaxis(string) The measure of surprise to be used in the residual plots.
The options (keyword) are; the residual (residual), the absolute residual
(absresidual), the posterior predictive p-value (ppp), two tailed ppp (tppp)
and the percent relative predictive surprise (rps). The default is the resid-
ual.
xaxis(string) Variable to be used for the x-axis of a plot. The default is
the fit (mean prediction). May also be a data variable or a Stata function
of the fit or data, for example log10(fit).
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine com-
mand when using plot(summary).
save(string,replace) A file (.dta) for saving the measures of surprise.
koptions(string) Options passed directly to Stata’s kdensity command
when using plot(density) or when calculating the relative predictive sur-
prise.
by(varname) Categorical variable that controls the plotting symbol in a
scatter plot. Each level of the variable is shown by a different symbol.
lcondition(string) A condition, such as ‘res > 2’, that is applied when
deciding whether to label the points on a scatter plot. Only those points
that satisfy the condition are labelled.
lvariable(varname) Variable containing the values used to label the points
on a scatter plot.
nsamples(#) Option that controls the number of samples used to construct
an empricial probability plot (epp).

mcmccusum - cusum plot of MCMC simulations

15

Syntax
mcmccusum varlist ifin [, options]

options description

reference(#) number of reference curves
chain(varname) Variable identifying different chains
iteration(varname) Variable for the x-axis
overlay Requests that chains are overlayed on one graph
goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

Description
mcmccusum plots the cusum, that is the cumulative sum of deviations about
the mean . Useful for detecting early drift in the chain caused by the choice
of inital values. If more than one variable is specified then the separate plots
will be combined and placed next to one another.

Options
reference(#) Number of reference curves added for comparison with the
actual data; that is cusum plots for simulated data with the same mean,
standard deviation and correlation as the real data but no drift. Defaults
to 0.
chain(varname) Gives the chain identifier and requests separate cusum
plots for each chain. If omitted, it implies a single chain.
overlay(varname) Used together with chain to request that the cusum
plots from each chain be overlayed on a single graph.
iteration(varname) Variable used for the x-axis. If not specified the points
are plotted in the order in which they appear in the dataset at points 1,2,3...
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.

mcmcdensity - plots posterior density estimates

Syntax
mcmcdensity varlist ifin [, options]

Description
mcmcdensity plots the smoothed density estimate from an MCMC chain.
This command is a wrapper that calls the stata command kdensity. However
it will allow bounds to be set. For example, since the posterior of a standard

16

options description

lbounds(string) Lower bounds for parameter ranges
ubouns(string) Upper bounds for parameter ranges
koptions(string) Options passed to kdensity

goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

addplot(string) Stata code for plots to overlay the density
save(string,replace) File (.dta) for saving the plotting points

deviation is known to be positive it is possible to get a smooth density that
does not allocate probability to negative values by setting lbound=0 and
ubound=. The boundary is imposed by reflecting the data in the limit as
described in Silverman(1986).

Options
lbounds(string) Lower bounds for the ranges of each parameter or a miss-
ing value if the parameter is unbounded, for instance with three parameters
in varlist, we might specify low(. . 0) in order to bound the third pa-
rameter. If the option is omitted then no lower bounds are set.
ubounds(string) Upper bound for the range of each parameter. See lbound.
koptions(string) Options passed directly to Stata’s kdensity command.
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.
addplot(string) Stata code for creating a plot to overlay the density, for
instance, to draw the prior over the posterior.
save(string,replace) File(.dta) for saving the plotting points.

mcmcgeweke - version of the Geweke test for convergence

Syntax
mcmcgeweke varlist ifin [, options]

options description

percentages(# #) lower and upper percentage of the chain to be compared

Description
mcmcgeweke is similar to the Geweke convergence test except that it uses
prais regression to estimate the standard errors. The test compares the

17

mean of the early part of a chain (default 10%) with the mean of the late
part of a chain (default 50%). Means, st errors and p-values are returned.
mcmcgeweke is byable, which makes it easy to analyse multple chains.

Options
percentages(# #) Lower and upper percentage of the chain to be com-
pared. Defaults to (10 50), that is to compare the first 10% of the chain
with the last 50%.

Saved Results
mcmcgeweke returns six values for each parameter. For example, for param-
eter 1 it returns, m1 1, the mean of the early section of the chain, se1 1,
the standard error of the early section of the chain, m2 1, the mean of the
late section of the chain, se2 1, the standard error of the late section of the
chain, z 1, the test statistic, p 1, p-values for test comparing the means.

mcmcintervals - interval estimates for successive parts of a chain

Syntax
mcmcintervals varlist ifin [, options]

options description

m(#) Number of divisions of the chain
level(#) Percentage within the plotted interval
chain(varname) Variable denoting the chain
iteration(varname) Variable defining the x-axis
goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

save(string,replace) File (.dta) for saving the plotting positions

Description
mcmcintervals plots interval estimates for m consecutive sections of the
chain. Intervals are calculated from the appropriate centiles of that portion
of the chain. If varlist contains more than 1 parameter the separate plots are
combined. The chain option plots the intervals for multiple parallel chains
and superimposes them on the same plot. A horizonal dashed line shows
the overall median.

Options
m(#) Number of sections into which each chain is divided. Default 10

18

level(#) Percentage within the interval. Defaults to 80%, i.e. between the
10th and 90th centiles.
chain(varname) Variable identifying the chains as 1, 2,. . . Requests sepa-
rate intervals for each chain.
iteration(varname) Variable defining the x-axis. If not specified the points
are plotted in the order in which they appear in the dataset at points 1,2,3...
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.
save(string,replace) File (.dta) for saving the plotting points.

mcmclength - estimates the required run length

Syntax
mcmclength varlist if in , [options]

options description

blocksize(#) Bootstrap block size
target(#) Target standard error
ptarget(#) Target percentage error

level(#) Size of credible intervals
bootopts(string) Bootstrap options
ac(#) Autocorrelation threshold

Description
mcmclength uses an existing short MCMC run to estimate the total number
of updates that would be required to obtain a given accuracy in the mean,
standard deviation or credible interval. Current accuracy (standard error) is
assessed using a blocked bootstrap. The target accuracy is expressed either
by specifying a standard error directly (target) or by specifying the stan-
dard error as a percentage of the estimated mean (ptarget). The number
of updates is scaled proportionately depending on the current and target
standard errors.

Options
blocksize(#) Size of the bootstrap blocks. Defaults to include autocorre-
lations over 0.05.
target(#) Target standard error. Defaults to use ptarget.
ptarget(#) Target standard error as a percentage of the mean. Defaults to
5, that is the target standard error is always 5% of the mean.

19

level(#) Size of credible intervals.
bootopts(string) Options passed directly to Stata’s bootstrap command.
ac(#) Set blocksize by specifying a limit on the autocorrelation. Defaults
to 0.05.

mcmcmahal - Mahanalobis Distance Plot

Syntax
mcmcmahal varlist if in , [options]

options description

distance(newvarname) Variable to store the Mahanalobis distances
replace Replace the distance variable if it already exists

noplot Calculations but no graphs

goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

Description
mcmcmahal is intended for checking the convergence of a set of parameters
simulated by an MCMC algorithm and stored in varlist. The Mahalanobis
distance is a squared measure of the distance between an individual set
of simulated parameters and the mean of the parameters over all simula-
tions. The measure allows for correlation between the parameters. The
command creates a combined plot containing trace (mcmctrace) and cusum
(mcmccusum) plots of the distance, a chi-squared (qchi) plot and an intervals
plot (mcmcintervals).

Options
distance(newvarname) Variable to contain the calculated distances
replace Permission to over-write the distance variable if it already exists
noplot Calculate the distances but do not plot them.
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.

mcmcsection - comparing posterior densities

Syntax
mcmcsection varlist if in [, options]

Description
mcmcsection plots smoothed density estimates for the whole MCMC chain

20

options description

m(#) Number of sections
chain(varname) Plot chains rather than sections of one chain
koptions(string) Options passed to kdensity

goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

nod do not display the measure D
save(string,replace) File (.dta) for saving the plotting points

(solid line) and for m fractions of the chain (dashed lines). For instance,
m=3 plots three smoothed densities for the first, middle and last thirds of
the chain. Densities smoothed using kdensity. The measure D represents
the maximum difference of two sectional densities as a percentage of the
maximum height of the density of the whole chain. D < 20 usually looks
like reasonable agreement, D < 10 is good. If varlist contains more than 1
parameter the separate plots are created and then combined.

Options
m(#) Number of sections. Defaults to 2.
chain(varname) Chain identifier. Requests separate smoothed densities for
each chain rather than by section of a single chain. The option m is ignored.
koptions(string) Options passed directly to Stata’s kdensity command.
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.
nod The measure of separation D is not shown on the graphs.
save(string,replace) File (.dta) for saving the plotting points.

mcmcstats - summary statistics for an MCMCrun

Syntax
mcmcstats varlist if in [, options]

Description
mcmcstats writes a table summarising the MCMC results for varlist includ-
ing the number of observations, mean, standard deviation, standard error,
median and credible interval. The standard error is calculated using prais re-
gression. mcmcstats is byable and returns the calculated summary statistics.

Options

21

options description

hpd Highest posterior density intervals instead of credibility intervals
level(#) Percentage for the interval estimates. Defaults to 95
correlations Show correlation matrix
covariances Show covariance matrix
save(string) File (.dta) for saving the summary statistics.

hpd Highest Posterior Density intervals are displayed rather than credible
intervals. The calculation is slower as it requires a density estimate and it
could fail completely with multi-modal distributions as the HPD interval
could consist of several disjoint regions.
level(#) Percentage for the interval estimate. Defaults to 95.
correlations Show the matrix of correlations between the parameters.
covariances Show the matrix of covariances between the parameters.
save(string,replace) File (.dta) for saving the summary statistics.

Saved Results
For each parameter mcmcstats returns eight values. Thus for parameter
one in the list it returns; the parameter name, r(par1), and then the statis-
tics r(n1), r(mn1), r(sd1), r(se1), r(md1), r(lb1) and r(ub1). When
requested for display the correlation and covariance matrices are returned
as r(C) and r(V).

mcmctrace - trace plot of a set of MCMCsimulations

Syntax
mcmctrace varlist if in [, options]

options description

chain(varname) Variable identifying the chain
overlay Overlay chains on a single plot
iteration(varname) Variable defining the x-axis
goptions(string) Options passed to the twoway command

cgoptions(string) Options passed to graph combine

Description
mcmctrace plots the consecutive values from an MCMC run as a time series.
The plot also shows the median and the 95% credible interval. If more than

22

one variable is specified then the separate plots will be combined and placed
next to or above one another. If there is more than one chain the plots for the
separate chains can either be displayed separately or overlayed onto one plot.

Options
chain(varname) Chain identifier. Requests separate traces for each chain.
overlay Used together with chain to request that the traces from each
chain be overlayed on a single plot.
iteration(varname) Variable used for the x-axis. If not specified the points
are plotted in the order in which they appear in the dataset at points 1,2,3...
goptions(string) Options passed directly to Stata’s twoway command.
cgoptions(string) Options passed directly to Stata’s graph combine.

mcmcrun - controls the creation of MCMCsimulations

Syntax
mcmcrun logpost [X] b [using] [fweight] if in, [options]

options description

samplers(string) List of samplers
burnin(#) Length of the burn-in
updates(#) Length of the chain
thin(#) Thinning number
adapt Adapt mhssamplers during the burn-in

parameters(string) Names of the parameters

predictions(string) Name of a function that calculates the predictions

replace Replace the output file if it exists

append Append to the output file

jposterior Do not recalulate the current log-posterior

savelogp Add log-posterior to the output file

nodots Do not show dots to monitor progress
mata Use Mata rather than Stata
data(string) Data to be transferred to Mata

Description
mcmcrun is a program for controlling the calculation of MCMC simulations
in Stata or Mata. It is simply a house-keeping program that calls samplers
specified by the user and writes the updated parameter values to the comma
delimited (.csv) text file as specified by using. Following the command word

23

the user must give the name of the program that calculates the log-posterior
(logpost) and the name of the row vector that contains the initial values of
the parameters(b). When using Mata the list must also include the name
of the data matrix that is passed to the user’s program for calculating the
log-posterior (X).

Options

samplers(string) Essential option. A sampler must be specified for each
parameter. Each chosen sampler is placed in brackets that must contain
a keyword that denotes the sampler followed by the options needed to run
that sampler. Recognised keywords are logn norm mnorm and trnc which
refer to the corresponding mhssamplers and arms ars griddy and slice.
Specifying mhslogn is equivalent to logn. skip requests that that parame-
ter is not updated, so that it is left with its initial value. Any other keyword
it assumed to refer to a sampler written by the user.
burnin(#) Length of the burn-in. The burn-in is not saved in the output
file. Defaults to 0.
updates(#) Length of the chain. Defaults to 1000.
thin(#) Thinning number. Defaults to 1, i.e. no thinning
adapt Adapt mhssamplers during the burn-in
parameters(string) Names for the parameters separated by spaces. Dashes
are allowed to denote a series of parameter names, for example, a1-a5 im-
plies a1 a2 a3 a4 a5.
predictions(string) Name of a function that calculates the predictions and
returns them as a row vector as r(pred). Predictions are added to the out-
put file under the same name as function. Thus if the function creating the
predictions is called ys then the predictions will be added to the output file
under the names ys1, ys2, ...

replace Replace the output file if it already exists
append Append to the output file
jposterior Do not recalulate the current log-posterior but take the last
calculated value as referring to the current point. Useful when the user’s
function calculates the full log-posterior rather than the log-conditional pos-
terior,
savelogp Add the final log-posterior calculated in any cycle to the output
file
nodots Do not show dots to monitor progress. In Mata the dots can slow
down the program noticeably for single core versions of Stata.
mata Use Mata rather than Stata. Requires the user to write their functions

24

in Mata.
data(string) Data matrices to be transferred to Mata. These matrices are
copied from Stata to Mata under the same names. The notation X=(x1 x2

x3) can be used to copy three Stata variables x1, x2 and x3 and save them
as a Mata matrix X.

writing your own samplers
A sampler with an unrecognised name, i.e. not skip or one of the mhs or gbs
samplers, will be assumed to be a sampler written by the user. This might
refer to the user’s Gibbs sampler for updating a standard distribution or it
might be that the user has written their own general purpose sampler. The
user’s program is called followed by the name of the program for calculating
the log-posterior, the name of the row vector containing the parameter val-
ues and ipar, the number of the first parameter to be updated. The if and
in conditions and any options are passed directly to the user’s program with
the exception of the option dim(#), which is taken as giving the dimension
of the update, i.e. the number of consecutive parameters updated by the
user’s program. If omitted it is assumed that the program updates a single
parameter. dim is not passed to the user’s program. For samplers written
in Mata the arguments are in order, the current value of the log-posterior,
a pointer to the function that calculates the log-posterior, the data matrix,
the row vector of parameter values and a scalar giving the number of the
parameter to be updated. These are followed by any other options in the
order in which they are specified by the calling program. Whether you use
Stata or Mata you will need to include the argument for the log-posterior
function or a dummy replacement if it is not used.

mhslogn - MH sampler for a parameter defined over (0,∞)

Syntax
mhslogn logpost b ipar [weight] if in, [options] Description

options description

sd(#) standard deviation of the proposal distribution
logp(#) the value of log-posterior at the current parameter value

mhslogn uses the Metropolis-Hastings algorithm to create a single update of
a single parameter. As it uses a log-normal proposal distribution it is suit-
able for a parameter, such as a variance, that can only take positive values.

25

Repeated calls to mhslogn can be used to create an MCMC algorithm and
hence estimate the posterior distribution of the parameter. The efficiency
but not the validity of the algorithm is affected by the choice of standard
deviation for the proposal. Values between a half and three-quarters of the
size of the range of the posterior (on a log scale) usually work well. It is
not valid to use previous results from the same chain to alter the standard
deviation of the proposal distribution.

Options
The user must supply the name of a program that evaluates the log-posterior
(logpost); this program must have the structure described in mhsnorm. Pa-
rameters are passed in a row vector (b). The number of the parameter that
is to be updated is given by ipar.

sd(#) Standard deviation for the proposal distribution (on the log-scale)
logp(#) Current value of the log-posterior. Evaluated is not given.

Mata
To call the Mata version requires,

mhslogn(real scalar logp,pointer function pf,real matrix X,real rowvector
theta,real scalar ipar,sd[rs] | accept[rs])

mhsnorm - MH sampler for a parameter defined over (−∞,∞)

Syntax
mhsnorm logpost b ipar [weight] if in, [options] Description

options description

sd(#) standard deviation of the proposal distribution
logp(#) the value of log-posterior at the current parameter value

mhsnorm uses the Metropolis-Hastings algorithm to create a single update
of a single parameter using a Gaussian (normal) proposal distibution. Since
the proposals may take any value this method is suited to parameters that
are defined between plus and minus infinity. Repeated calls to mhsnorm can
be used to create an MCMC algorithm and hence estimate the posterior
distribution of a set of parameters. The efficiency but not the validity of
the algorithm is affected by the choice of standard deviation of the proposal
distribution. Values between a half and three-quarters of the effective range

26

of the posterior usually work well. It is not valid to use previous results from
the same chain to alter the standard deviation of the proposal distribution.

Options
The user must supply the name of a program that evaluates the log-posterior
(logpost); see below. Parameters are passed in a row vector (b). The num-
ber of the parameter that is to be updated is given by ipar.

sd(#) Standard deviation for the proposal distribution
logp(#) Current value of the log-posterior. Evaluated if not given.

Structure for the user’s program The general form of the program
must be:

program logpost

syntax anything [fweight] [if] [in]

marksample touse

tokenize ‘"‘anything’"’

local logp "‘1’"

local b "‘2’"

local ipar = "‘3’"

local alpha = ‘b’[1,1]

local beta = ‘b’[1,2]

....

calculation of the log of the posterior

....

end

If frequency weights and if and in conditions are not required then this can
be simplified to

program logpost

args logp b ipar

local alpha = ‘b’[1,1]

local beta = ‘b’[1,2]

....

27

calculation of the log of the posterior

....

end

where logp is a scalar that will eventually contain the calculated value of
the log posterior, b is the row vector of parameters and ipar is the number
of the parameter being updated.

The calculation must return the value of the log posterior although con-
stants in the summation that produces this value can be omitted. Thus
only terms that depend on the parameter being updated need to be in-
cluded. Some gain in efficiency is often possible by altering the calculation
depending on which paramter is being updated. For instance,

program logpost

args logp b ipar

local alpha = ‘b’[1,1]

local beta = ‘b’[1,2]

....

if ‘ipar’ == 1 {

calculation of the log of the conditional posterior for parameter 1

}

else ...

....

}

end

Mata
To call the Mata version requires,

mhsnorm(real scalar logp,pointer function pf,real matrix X,real rowvector
theta,real scalar ipar,sd[rs] | accept[rs])

mhstrnc - MH sampler for a parameter defined over a truncated range

Syntax
mhstrnc logpost b ipar [weight] if in, [options] Description
mhstrnc uses the Metropolis-Hastings algorithm to create a single update of
a single parameter. As it uses a logistic transform, it is suitable for parame-
ters that can only take values over a bounded range; for instance, a propor-
tion defined over the range [0,1]. If the range of the parameter is [a,b] then

28

options description

sd(#) standard deviation of the proposal distribution
lbound(#) lower limit of the range of the posterior
ubound(#) upper limit of the range of the posterior
logp(#) the value of log-posterior at the current parameter value

the normal proposal is generated on the transformed scale log[(y-a)/(b-y)].
Repeated calls to mhstrnc can be used to create an MCMC algorithm and
hence estimate the posterior distribution of the parameter. The efficiency
but not the validity of the algorithm is affected by the choice of standard
deviation for the proposal. Values between a half and three-quarters of the
size of the range of the posterior (on the transformed scale) usually work
well. It is not valid to use previous results from the same chain to alter the
standard deviation of the proposal distribution.

Options
The user must supply the name of a program that evaluates the log-posterior
(logpost); this program must have the structure described in mhsnorm. Pa-
rameters are passed in a row vector (b). The number of the parameter that
is to be updated is given by ipar.

sd(#) Standard deviation for the proposal distribution (on the logistic scale)
lbound(#) Lower limit of the parameter’s range
ubound(#) Upper limit of the parameter’s range
logp(#) Current value of the log-posterior. Evaluated is not given.

Mata
To call the Mata version requires,

mhstrnc(real scalar logp,pointer function pf,real matrix X,real rowvector
theta,real scalar ipar,sd[rs],lbound[rs],ubound[rs] | accept[rs])

mhsmnorm - sampler for a multi-dimensional parameter

Syntax
mhsmnorm logpost b ipar [weight] if in, [options] Description
mhsmnorm uses the Metropolis algorithm to create a single update of a block
of parameters. It uses a multivariate Gaussian proposal distribution and is
suitable for parameters that can take any real value although it generally

29

options description

cholesky(name) Cholesky decomposition of the variance matrix
logp(#) the value of log-posterior at the current parameter value

works well for parameters with restricted ranges provided that their poste-
rior is well away from the bounds. Repeated calls to mhsmnorm can be used
to create an MCMC algorithm and hence estimate the posterior distribution
of the set of parameters. The efficiency but not the validity of the algorithm
is affected by the choice of matrix given in the option cholesky. This matrix
represents the cholesky decomposition of the variance-covariance matrix of
the proposal distribution. It is not valid to alter this matrix based on pre-
vious simulations from the same chain.

Options
The user must supply the name of a program that evaluates the log-posterior
(logpost); this program must have the structure described in mhsnorm. Pa-
rameters are passed in a row vector (b). The number of the parameter that
is to be updated is given by ipar.

cholesky(name) Cholesky decomposition of the variance matrix of the pro-
posal distribution
logp(#) Current value of the log-posterior. Evaluated is not given.

Mata
To call the Mata version requires,

mhsmnorm(real scalar logp,pointer function pf,real matrix X,real rowvector
theta,real scalar ipar,cholesky[rm] | accept[rs])

wbsarray - write a rectangular dataset in WinBUGS format

Syntax
wbsarray varlist [using] if in [, options]

option description

formats(string) Formats for the data
names(string) Variable names for use in WinBUGS
replace Replace an existing output file

30

Description
wbsarray writes a WinBUGS array to the results window and/or a text file
with the filename given by using. Useful for rectangular sets of variables
with equal length. WinBUGS can read more than one data file so it would
be possible to put other arrays, scalars etc into a different file.

Options
formats(string) Gives the format used for writing the data. Defaults to
%8.3f. Formats cycle so that f(%4.0f %3.1f) would write the variables
using %4.0f %3.1f %4.0f . . .
names(string) Alternative names for the variables. Enables a variable to be
called by a different name in WinBUGS to that used in Stata. For exam-
ple, names(a b) would create two WinBUGS vectors named a[] and b[],
and name(A[,1] A[,2]) would create two columns of a WinBUGS matrix
called A.
replace Replace the output file if it already exists.

wbscoda - read data from Coda formatted files

Syntax
wbscoda [using], clear [options]

options description

clear Clear existing data from Stata (essential)
chains(numlist) Chain identifier
keep(string) List of parameters to be kept
openbugs Read files created by OpenBUGS

Description
Reads a file of CODA formatted data saved from a WinBUGS or Open-
BUGS analysis. The root of the filename is given by using. The command
will read multiple chains if requested. The MCMC simulations produced by
WinBUGS are output in the format required by the convergence checking
program CODA. An index file is created listing the parameter and the posi-
ions in the data file where the results are stored. Data files are created, one
for each chain, containing the simulated values. The formatting is awkward
and requires this special command in order to read the data into Stata.
WinBUGS programmers often use a full stop as part of a parameter name
as in y.sigma. Variable names in Stata cannot contain full stops and so the
name is changed to y sigma when the data are read into Stata. When vec-

31

tors of parameters are saved by WinBUGS the names are also editted; thus
alpha[2] would become alpha 2 in Stata. In theory this would result in
WinBUGS parameters alpha.2 and alpha[2] being given the same name
in Stata, which would cause wbscoda to fail. Avoiding this problem within
wbscoda would result in rather ugly or unpredictable variable names, so the
responsibility is left with the user to avoid such clashes when choosing their
WinBUGS parameter names.

Options
clear Clear any existing data from Stata.
chains(numlist) Numbers of the chains that are to be read. Only relevant
when multiple chains were run in WinBUGS or OpenBUGS. Defaults to
read a run with a single chain.
keep(string) Parameters to keep. Only those parameters will be read from
the CODA file. Specify the names as used by WinBUGS. Any match to the
start of the name will be read. So keep(a) would read alpha, a[1], a[2],
etc. Defaults to read all parameters.
openbugs Files created by OpenBUGS. Defaults to WinBUGS.

wbsdecode - read lists of WinBUGS data into Stata

Syntax
wbsdecode using , clear [options]

options description

clear Permission to replace the current data in Stata (essential)
array Read an array rather than a list

Description

wbsdecode reads data from a text file when the data are stored in Win-
BUGS format, that is, as a list structure or an array. If the data are part
of a compound document they must be copied to a text file before using
wbsdecode. wbsdecode is useful for reading the data from the examples
supplied with WinBUGS so that the data can be processed in Stata, but
it would also read data from R or S-plus structures. Any existing data in
Stata will be lost so you must specify the clear option.

Options
clear Overwrite the current data in Stata (essential).

32

array Read a WinBUGS array. Defaults to reading a list.

Warning wbsdecode reads list structures by searching for the next ”=”
and then locating the variable name that precedes it and the structure type
that follows it. Spreading this information over more that one line would
cause wbsdecode to misread the data. So
y = c(
1 ,2 ,3)
is OK. But
y
= c(1, 2, 3)
would fail

wbslist - write a list of data or initial values

Syntax
wbslist wbsargs [using] [, options]

options description

replace replace the output file if it exists

Description
wbslist writes data or initial values to a text file in an R-like list struc-
ture suitable for reading into WinBUGS. The data may be any combination
of Stata scalars, variables, matrices, two-way structures created from Stata
variables, multi-way tables or values typed directly into the command by
the user.

WinBUGS can also read arrays of data, but these must be created using
the wbarray command and stored in a separate file. WinBUGS can read
multiple data files.

Following the command word the separate components of the list are
place in brackets (). The contents of each bracket may begin with one of the
keywords scalar, vector, matrix or structure (variable is an allowed as a syn-
onym for vector and the command words may be abbreviated). A structure
is a matrix within WinBUGS that is created from a set of Stata variables.
If the contents of the bracket do not begin with any of these keywords then
the contents are treated as text and are written directly to the output file.
Thus a call to wbslist might be, cmd . wbslist (mat R S) (struc y1 y2 y3,

33

name(Y)) using data.txt, replace where R and S are Stata matrices and y1,
y2 and y3 are Stata variables.

Tables are mutli-way structures created by specifying in order , a vari-
able containing the table contents and then one variable for each dimension
containing values 1,2,... If there is more than one entry for a particular cell
their sum is plac

Options
replace overwrite the output file if it already exists.

Suboptions
These are options placed with the brackets () that control the listing of each
component.
formats(string) Specifies the formats used for writing the data. See wbsarray.
linesize(#) Number of values per line in the output file. Defaults to 10.
names(string) Names to be used in the WinBUGS data file. Defaults to use
the Stata name. In this way data may have a different name in WinBUGS
to that used in Stata. If used the number of names must match the number
of items. When a structure is formed from several Stata variables it must
be given a single name, otherwise renaming is optional.

vector, & structure also allow ‘if’ and ‘in’ qualifiers to limit the data
that are written to the output file. These are placed within the appropriate
set of brackets, as in
wbslist (vector x in 1/5, name(x1)) (vector x in 6/10, name(x2))

using data.txt, replace

Writing Strings
When the brackets do not start with a keyword, the contents are simply
written to the output file. However, prior to writing, two expansions are
applied based on curly {} and square [] brackets. These features are pri-
marily intended for generating initial values. {} are repeatedly evaluated
prior to writing. So,

wbslist (alpha=c(5{0})) using inits.txt, replace

would write a list containing alpha=c(0,0,0,0,0) and
wbslist (alpha=c(5{rnormal()})) using inits.txt, replace

would write a list containing 5 different values generated by evaluating the
Stata command rnormal().
Square brackets refer to the contents of a Stata variable. So,

34

wbslist (alpha=c(5{a[3]})) using inits.txt, replace

would write a list in which alpha had 5 values taken from rows 3, 4, 5, 6
and 7 of the Stata variable a.

wbsmodel - copy WinBUGS model file

Syntax
wbsmodel thisfile modelfile [identifier]

Description
wbsmodel copies some WinBUGS syntax commands to a text file (model
file). It was originally called tomodel. It provides a record of the exact
model file that was used when calling WinBUGS from within Stata. The
WinBUGS code must follow the wbsmodel command line and be commented
out using /* ... */. In this way the WinBUGS code is copied to the model
file but the commenting stops Stata from trying to run those lines. The pro-
gram works by re-reading the do file until this tomodel command is found
and then its writes anything that follows and is commented out to the model
file. Specifying the name of the model file will usually uniquely define the
command line that marks the starting position. However, if you have a do
file with several inserted sections of WinBUGS code and you choose to write
them to model files with the same name then it will need a further identifier
to uniquely determine the correcting starting position.

Options
thisfile Name (and path) of the current do file that contains the tomodel
command and the WinBUGS code. If the path contains spaces then enclose
in quotes.
modelfile Name (and path) of the model file that is to contain the Win-
BUGS code. If the path contains spaces then enclose in quotes. Automati-
cally overwrites any existing file with the same name.
identifier Any text that unqiuely determines this wbsmodel command
line. Usually unnecessary as the modelfile will be enough to determine the
start position of the WinBUGS code. However, if two blocks of code are
written to files that have the same name then place an identifer at the end
of the line to distinguish the two calls to wbsmodel.

wbsrun - run WinBUGS from with Stata

Syntax
wbsrun [using], [options]

Description

35

options description

Optional
executable(string) Path to the executable
openbugs Run OpenBUGS rather than WinBUGS
background Run WinBUGS in the background
headless Do not display the OpenBUGS interface.

wbsrun executes a WinBUGS script. If the script ends with quit() then
WinBUGS closes after the script has executed and control is returned to
Stata. Without quit() in the script file, WinBUGS remains open after the
commands have executed and may be used interactively. When interactively
closed, control will return to Stata. To save giving the path to WinBUGS
each time a new program is run, the location can be saved in a file called
executables.txt in the PERSONAL folder. wbsrun detects Unix/Linux
and modifies its operation according. When Unix is found openbugs is as-
sumed.

Options
executable(string) Path to the WinBUGS or OpenBUGS executable. Only
needed if the path is not stored in the executables.txt file.
openbugs Run OpenBUGS rather than WinBUGS.
background Run in the background returning control to Stata. The default
is for Stata to freeze until WinBUGS has finished.
headless Do not show the OpenBUGS interface (OpenBugs only).

wbsscript - write a WinBUGS script file

Syntax
wbsscript [using] , options

Description
writes a script file for fitting a model in WinBUGS or OpenBUGS. The
scripting languages of WinBUGS and OpenBUGS are different so script
files cannot be used interchangeably. The ado file checks the operating sys-
tem and will write scripts using Unix style paths if Unix is detected.

Options
path(string) path placed before the data, init, model, coda and log files
within the script. This option saves typing the same path for every file

36

options description

modelfile(string) Name of the text file containg the model
datafile(string) Name(s) of the data file(s)
initsfile(string) Name of the initial value files
codafile(string) Root of the name for the coda files
set(string) Parameters to be saved
logfile(string) Name for saving the log file
burnin(#) Length of the burn-in
updates(#) Length of the MCMCrun
thin(#) Save every nth simulation
dic Write the DIC to the log file
noquit Close WinBUGS on completion

path(string) Path to the folder containing the input files

seed(#) Starting point for the random number generator (OpenBUGS only)
openbugs Create an OpenBUGS script file
replace Replace the script file if it exists

when they are stored together in the same folder. It is important to give
the full path names for every file because when WinBUGS runs you cannot
assume that it will start in the same working directory as you are using
in Stata. If path is omitted then all files without an explicit path will be
assumed to be in the current working directory and the full path will auto-
matically be added.
modelfile(string) Name of a text file containing the WinBUGS model.
datafile(string) Names of the data file(s). When there are several data
files they should all be included in this option separated by +’s.
initsfile(string) Name of the file(s) of initial values. The names of the
initial values files should be separated by ’+’ as with data files, for intance, (
in1.txt+int2.txt+int3.txt) When multiple initial values files are speci-
fied a separate chain is run for each set of initial values. A gen.inits command
is automatically placed after the reading of inital values so that WinBUGS
will try to randomly generate inital values for any parameters not explicitly
mentioned in the initsfiles. WinBUGS is not always able to generate initial
values and in rare circumstances this can cause a program to fail.
codafile(string) String to form the start of the names of the coda files.
WinBUGS outputs an index file and data file(s) (one for each chain) with
names derived from this root (see wbscoda).
set(string) List of parameters that are to be saved.

37

logfile(string) Name for saving the log file, a record of the steps in the
WinBUGS analysis.
burnin(#) Length of the burnin, that is, the initial set of simulations that
are discarded. Defaults to 0 (no burn-in).
updates(#) Length of the chain(s). Defaults to 1000.
thin(#) Save every nth simulation. Defaults to zero, no thinning.
seed(#) Select a different run of random numbers. Values between 1 and
14. Defaults to 1. OpenBUGS only.
dic Write the deviance information criterion to the logfile.
openbugs Prepare a script for use in OpenBUGS. Defaults to WinBUGS
commands.
noquit Do not quit WinBUGS/OpenBUGS when the analysis is completed.
replace Permission to erase the script file if it already exists.

38

Parameterization used in logdensity
Bernoulli

p(y; p) = py(1− p)1−y y = 0, 1 0 ≤ p ≤ 1

Beta

p(y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1 0 ≤ y ≤ 1, 0 < α, β

Binomial

p(y; p, n) =
n!

y!(n− y)!
py(1− p)n−y y = 0, 1, . . . , n, 0 ≤ p ≤ 1

Categorical

p(y) = py y = 1, 2..., n

n∑
y=1

py = 1

Chi-squared

p(y; k) =
yk/2−1exp(−y/2)

2k/2Γ(k/2)
0 < y, 0 < k

Dirichlet

p(y[];α[]) =
Γ(
∑n

i=1 αi)∏n
i=1 Γ(αi)

n∏
i=1

yαi−1
i 0 < yi < 1,

n∑
i=1

yi = 1, 0 < αi

Exponential

p(y;µ) =
exp(−y/µ)

µ
0 < y, 0 < µ

Gamma

p(y;α, β) =
yα−1exp(−y/β)

βαΓ(α)
0 < y 0 < α, β

Generalized Gamma

p(y;α, β, γ) =
γyα−1exp(− [y/β]γ)

βαΓ(αγ)
0 < y 0 < α, β, γ

39

Inverse Gamma

p(y;α, β) =
βαy−α−1

Γ(α)
exp(−β/y) 0 < y 0 < α, β

Inverse Gaussian

p(y;λ, µ) =

[
λ

2πy3

]1/2
exp

{
−λ(y − µ)2

2µ2y

}
y > 0 0 < λ, µ

Laplace

p(y;µ, b) =
1

2φ
exp

(
−|y − µ|

φ

)
−∞ < y <∞, 0 < φ

Logistic

p(y;µ, σ) =
exp

(
−y−µ

σ

)
σ
[
1 + exp

(
−y−µ

σ

)]2 −∞ < y, µ <∞, σ > 0

Log-normal

p(y;µ, σ) =
1

yσ
√

2π
exp

{
−(log(y)− µ)2

2σ2

}
y > 0, −∞ < µ <∞, 0 < σ

Multinomial

p(y; p, n) =
n!∏
i yi!

∏
i

pyii
∑
i

yi = n
∑

pi = 1 0 < pi < 1 yi = 0, 1..., n i = 1...k

Multivariate Normal

p(y;µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

[
−1

2
(y − µ)′Σ−1(y − µ)

]
Multivariate Student-t

p(y;µ,Σ) =
Γ((k + p)/2)

Γ(k/2)(kπ)p/2|Σ|1/2
[
1 + (y − µ)′Σ−1(y − µ)/k

]−(k+p)/2
Negative Binomial

p(y; p, k) =
(y + k − 1)!

y!(k − 1)!
pk(1− p)y y = 0, 1, . . . , 1 ≤ r, 0 < p < 1

40

Normal

p(y;µ, σ) =
1

σ
√

2π
exp

[
− 1

2σ2
(y − µ)2

]
−∞ < y <∞ −∞ < µ <∞, 0 < σ

Pareto

p(y; a, c) = acay−(a+1) c ≤ y 0 < a

Poisson

p(y;λ) = exp(−λ)
λy

y!
y = 0, 1, . . . , 0 < λ

Student-t

p(y;µ, σ, k) =
Γ
(
k+1
k

)
σ
√
kπΓ

(
k
2

) (1 +
(y − µ)2

kσ2

)− k+1
2

0 < a

Uniform

p(y;α, β) =
1

β − α
α < y < β

Weibull

p(y; υ, µ) =
υ(y/µ)υ−1

µ
exp(−(y/µ)υ) y > 0, 0 < υ, µ

Wishart

p(Y ;S, k) =
|Y |(k−p−1)/2

2kp/2Γ(k/2)|S|k/2
exp

[
−1

2
Tr(S−1Y)

]
p ≤ k

41

